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Universitätsmedizin Berlin, Berlin, Germany
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Germany
eJung Diagnostics GmbH, Hamburg, Germany
f Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, Magdeburg, Germany
gDepartment of Neurology, University Hospital Magdeburg, Magdeburg, Germany
hVivantes Ida Wolff Krankenhaus, Berlin, Germany
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Abstract.
Background: The cause of cognitive impairment in acutely hospitalized geriatric patients is often unclear. The diag-
nostic process is challenging but important in order to treat potentially life-threatening etiologies or identify underlying
neurodegenerative disease.
Objective: To evaluate the add-on diagnostic value of structural and metabolic neuroimaging in newly manifested cognitive
impairment in elderly geriatric inpatients.
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Methods: Eighty-one inpatients (55 females, 81.6 ± 5.5 y) without history of cognitive complaints prior to hospitalization
were recruited in 10 acute geriatrics clinics. Primary inclusion criterion was a clinical hypothesis of Alzheimer’s disease
(AD), cerebrovascular disease (CVD), or mixed AD+CVD etiology (MD), which remained uncertain after standard diagnos-
tic workup. Additional procedures performed after enrollment included detailed neuropsychological testing and structural
MRI and FDG-PET of the brain. An interdisciplinary expert team established the most probable etiologic diagnosis (non-
neurodegenerative, AD, CVD, or MD) integrating all available data. Automatic multimodal classification based on Random
Undersampling Boosting was used for rater-independent assessment of the complementary contribution of the additional
diagnostic procedures to the etiologic diagnosis.
Results: Automatic 4-class classification based on all diagnostic routine standard procedures combined reproduced the
etiologic expert diagnosis in 31% of the patients (p = 0.100, chance level 25%). Highest accuracy by a single modality was
achieved by MRI or FDG-PET (both 45%, p ≤ 0.001). Integration of all modalities resulted in 76% accuracy (p ≤ 0.001).
Conclusion: These results indicate substantial improvement of diagnostic accuracy in uncertain de novo cognitive impairment
in acutely hospitalized geriatric patients with the integration of structural MRI and brain FDG-PET into the diagnostic process.

Keywords: Cognitive impairment, geriatric inpatients, magnetic resonance imaging, multimodal classification, positron
emission tomography

INTRODUCTION

Dementia disorders are highly prevalent in the
elderly and on the rise due to worldwide population
aging. The clinical diagnosis of a late prodromal or
dementia stage neurodegenerative disease including
Alzheimer’s disease (AD) is a very serious event for
patients and their relatives [1]. Individuals aged 60 or
older are most afraid of being affected by AD, even
more than of cancer and stroke combined [2]. There-
fore, it is important to control the rate of false positive
AD diagnoses [3]. In standard clinical routine, the
diagnostic process relies on descriptive symptom-
based criteria [4]. Diagnosis based on symptoms
alone, however, is prone to be inaccurate, particularly
at earlier clinical stages when symptoms are emerg-
ing, subtle or mild, and in cases with inconclusive,
incomplete, and/or atypical clinical presentation [5].

According to newly updated criteria, accuracy
of the etiological diagnosis of clinically uncertain
cognitive impairment (CUCI) can be improved by
complementing symptom-based criteria with evi-
dence of the underlying pathophysiology or of
characteristic structural, functional, and metabolic
topographical alterations based on biomarkers
derived from magnetic resonance imaging (MRI),
positron emission tomography (PET), or cere-
brospinal fluid (CSF) assays [6, 7]. The vast majority
of studies on the use of these biomarkers for the diag-
nosis of AD, however, have focused on memory clinic
outpatient settings and employed restrictive eligibil-
ity criteria resulting in rather highly selected patient
samples that might not be representative of the ‘typ-
ical’ patient in the community [8]. Trial participants
recruited in urban major academic centers tend to be

highly educated and to be in better than average phys-
ical condition [8]. The role of biomarkers in more
‘difficult’ and primary care settings is still poorly
investigated. For example, initial clinical experience
with the combination of different biomarkers indi-
cates that the fraction of patients with completely
congruent biomarkers might be surprisingly small in
routine patient care [9].

A particularly difficult clinical setting is CUCI in
patients that are admitted and hospitalized in a geri-
atric hospital or unit for an acute or subacute illness.
Compared to the typical outpatient of a psychiatric
or neurological memory clinic, acutely hospitalized
geriatric patients suffer from more complex medi-
cal conditions and/or comorbidities, often associated
with considerable pain. In addition, they are on more
extensive medication, often including centrally act-
ing drugs with considerable tolerability problems
and side effects impacting cognition. Typical pre-
sentations include patients with prolonged cognitive
impairment during recovery from surgical treatment
on a geriatric unit, although they had no history of
cognitive problems prior to admission and hospi-
talization. After ruling out delirium and depressive
episode, the suspicion of a first clinical manifestation
of a neurodegenerative disease should be assessed
before the patient is finally discharged from the acute
care geriatrics unit [10].

We postulate that biomarkers are particularly
useful in these difficult cases. The present study eval-
uated the added value of structural MRI [11] and PET
with 2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) [12]
together with additional neuropsychological testing
over standard diagnostic workup in newly mani-
fested, clinically uncertain cognitive impairment in
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elderly patients hospitalized in a geriatrics unit due
to an acute or subacute indication.

MATERIALS AND METHODS

Patients

All data were derived from the prospective clini-
cal trial ‘Comparison and integration of modalities in
the early and differential diagnosis of dementing dis-
orders in hospitalized geriatric patients: a prediction
study’ (acronym: iDSS (integrated Decision Support
System)).

Eligibility criteria that led to the inclusion of 109
patients are given in an appendix. Six of the 109
patients dropped-out after inclusion but prior to the
first study-related examination. Structural MRI was
successfully completed in 90 patients, FDG-PET in
97. We included all patients (n = 81) with (i) both
structural MRI and FDG-PET (no patients were
excluded due to limited image quality) and (ii) a eti-
ological diagnosis (as described below) of either a
non-neurodegenerative etiology, cerebrovascular dis-
ease (CVD), AD, or mixed CVD+AD etiology (MD).
Patients with a baseline diagnosis of a neurodegen-
erative disease other than AD were excluded and,
therefore, did not affect the outcomes of this study.
The study flowchart is shown in Fig. 1.

Standard diagnostic workup

Standard diagnostic workup included patient
history (including education, lifestyle, and envi-
ronmental factors), physical/neurological examina-
tion, standard neuropsychological testing, standard
blood/urine laboratory tests (including insulin, dif-
ferent vitamins, and inflammation markers), and
ApoE genotyping. Standard neuropsychological test-
ing consisted of: the Mini-Mental State Examination
(MMSE) [13], the DemTect psychometric screening
tool [14], Clinical Dementia Rating (CDR) [15], the
behavioral pathology in Alzheimer’s disease rating
scale (BEHAVE-AD) [16], and a short version of
the geriatric depression scale for inpatients (GDS-
K) [17]. Standard diagnostic workup did not include
additional dementia-specific tests. Structural brain
imaging (CT or MRI) performed prior to inclusion
was available only in very few patients where it had
been performed to exclude treatable causes of the
cognitive impairment such as subdural hematoma,
brain tumor or normal pressure hydrocephalus.

Fig. 1. Study flowchart.

Additional diagnostic procedures

Additional diagnostic procedures performed as
part of the clinical study included further neuropsy-
chological testing, structural MRI and FDG-PET.

Additional neuropsychological testing comprised
the German version of the test battery of the Con-
sortium to Establish a Registry for Alzheimer’s
Disease (CERAD) including trail making test
A+B and phonematic fluency (CERAD-plus w/o
MMSE) [18], a multiple choice vocabulary test
to estimate premorbid intelligence (MWT-A) [19],
the Montgomery-Asberg Depression Rating Scale
(MADRS) [20], and the Informant Questionnaire on
Cognitive Decline in the Elderly (IQCODE) [21].

MRI of the brain was performed with the same 3
Tesla MR Scanner (Siemens Trio) in all patients. The
structural sequences included 3-dimensional T1-
weighted MPRAGE (1 × 1 × 1 mm3), T2-weighted
FLAIR (in-plane 1.2 mm, slice thickness 2.5 mm),
a T2*-weighted sequence (in-plane 0.7 mm, slice
thickness 5 mm), and ToF non-contrast enhanced
MRA. Structural MRI was interpreted visually
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on a computer monitor of a PACS workstation.
Visual interpretation of mesio-temporal atrophy
was supported by quantitative analysis of regional
grey matter volume combining voxel-based mor-
phometry and atlas-based hippocampal volumetry
(Biometrica AD®, jung diagnostics GmbH, Ham-
burg, Germany). Visual interpretation of MRI for
vascular disease assessed large vessel strokes,
recent small subcortical infarcts, chronic lacunes,
cerebral microbleeds/siderosis, and white matter
hyperintensities (Supplementary Material 1).

A PET scan of the brain of 15 min duration was
acquired 40 ± 5 min after i.v. administration of about
200 MBq FDG according to common guidelines [22].
The same PET/CT scanner (Philips Gemini TF 16)
was used in all patients. PET emission data were
reconstructed into 15 frames each of 1 min dura-
tion using the iterative reconstruction algorithm of
the PET/CT scanner software. Spatial resolution in
the reconstructed images was about 7 mm full-width-
of-half-maximum. Image processing including post
acquisition inter-frame motion correction and voxel-
based statistical testing was performed using the
Statistical Paramatric Mapping software (version
SPM8) as described by Lange and colleagues [23].
In short, the ‘realign’ tool of SPM8 with the first
frame as reference was used for inter-frame motion
correction. The magnitude of the motion from frame
to frame was estimated by tracking 5 predefined ref-
erence points in the brain. Frames with a motion
amplitude >4 mm (about half the spatial resolution)
were discarded in order to avoid relevant errors by
mismatch between PET and low-dose CT for atten-
uation correction [24]. A motion-corrected static
uptake image was obtained by summing the remain-
ing frames after realignment.

A sample report used for visual interpretation of
FDG-PET is provided in Supplementary Material 2.

Participation in lumbar puncture for analysis of
CSF was optional. Only 10 of the 81 patients con-
sented in lumbar puncture so that CSF was not
included in the analyses.

Etiologic diagnosis by experts

Each participant was classified into one of the fol-
lowing five etiology classes: non-neurodegenerative
etiology, AD, CVD, MD, and neurodegenerative
etiology different from AD. Classification consen-
sus was based on all available data, i.e., from both
standard diagnostic workup and additional diagnos-
tic procedures. The consensus panel consisted of

an inter-disciplinary team of academic experts for
internal medicine (A.R.), neuropsychology (A.M.),
nuclear medicine (R.B.), and neuroradiology (J.F.),
all experienced in the diagnosis of neurodegenerative
diseases. Diagnostic criteria for AD [7] and vascular
dementia [25] were taken into account as far as pos-
sible (s. Discussion). A patient was classified as MD
if there was evidence for both AD and CVD as cause
of the CUCI. The ‘non-neurodegenerative etiology’
class included reduced general health, depression,
prolonged effect of delirium and hippocampal scle-
rosis of aging [26, 27]. Patients in the ‘non-AD
neurodegeneration’ class were excluded from the
analyses (Fig. 1).

Automatic etiologic classification

In addition to the etiological diagnosis by the
experts, etiological classification was also performed
fully automatically using a machine learning method
that accounts for complex relationships between
data [28]: RUSBoost (‘Random Undersampling
Boosting’), an optimized version of the AdaBoost
(‘Adaptive Boosting’) algorithm [29]. In AdaBoost
weak learners are iteratively adapted so that training
examples which have been misclassified in the pre-
vious iteration become a stronger weight in the next
iteration [30]. The final classification is then done by
a weighted vote of all built models. As weak learners
we chose decision trees, which is a common choice
for AdaBoost. Random undersampling is introduced
into AdaBoost in order to account for unbalanced
class size [29]. The Matlab2013 implementation of
RUSBoost was used with default parameters. The
number of trees grown per training cycle was set to
100.

Classification analyses were performed separately
for (i) each single feature (e.g., MMSE sum score),
(ii) each single modality (e.g., PET), (iii) all stan-
dard features combined, (iv) all features from both
standard and additional modalities combined, and
(v) a set of expert features. For each of these analy-
ses, overall accuracy of the full 4-class classification
was determined. In addition, accuracy for detection
of each of the single etiological classes (versus all
other classes) was obtained. In order to assess the
performance in detection of neurodegeneration, we
evaluated the accuracy of automatic discrimination
between the patients with pure AD and the patients
with MD combined into one group versus all others
(patients with pure CVD and patients with non-
neurodegenerative etiology). In order to assess the
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performance in detection of cerebrovascular disease,
we evaluated the accuracy of automatic discrimina-
tion between the patients with pure CVD and the
patients with MD combined into one group versus
all others (patients with pure AD and patients with
non-neurodegenerative etiology).

To estimate the generalization error for all clas-
sification analyses, we used 5-fold cross-validation,
which means that 4/5 of the data were used for
training and 1/5 for testing to ensure complete inde-
pendence between training and test data. This was
repeated such that each 1/5 of the data was used
once as the testing data [30]. Using this procedure, a
class label was generated for each patient, which then
was compared to the expert consensus diagnosis. The
cross-validation procedure was repeated 30 times to
produce stable results.

To test for statistical significance, a permutation
test was used, in which the labels were randomly per-
muted for 1000 times and then the number of cases
was counted in which the accuracy of permuted labels
exceeded the true accuracy. The p-value was then
determined as the fraction of these cases relative to the
total number of permutations. The lowest achievable
p-value was 0.001.

Features for automatic classification

Features for automatic etiologic classification were
categorized into ‘standard features’ and ‘additional
features’. The standard features included demo-
graphic data (‘demo’: age, gender and education, 3
features), clinical data (‘clinical’, 32 features), labo-
ratory data (‘lab’, 22 features), data from the standard
neuropsychological tests (‘standardNP’: DemTect,
GDS, CDR, BEHAVE and MMSE sum score, 5
features), and ApoE genotype parametrized as the
number of ApoE4 allels (‘ApoE’, 1 feature). The
additional features included data from additional
neuropsychological testing (‘additionalNP’, 14 fea-
tures), MRI features separated into ‘vascularMRI’
features comprising visual scores for CVD (large ves-
sel stroke, recent small subcortical infarct, chronic
lacunes, cerebral microbleeds/siderosis, white matter
hyperintensities [25], 24 features) and ‘volumet-
ricMRI’ features comprising grey matter volume of
various predefined brain regions [31, 32] (14 fea-
tures), and mean FDG uptake in predefined brain
regions [23] (‘PET’, 26 features). Regional FDG
uptake was scaled to mean FDG uptake in brain
parenchyma as reference region, because this had
resulted in better prognostic power for prediction of

AD dementia in mild cognitive impairment subjects
than scaling to the pons in a previous study [23].

The MMSE sum score (standard feature) as well
as the other CERAD-plus subscores (additional fea-
tures) were corrected for age, gender, and education
prior to automatic classification. A detailed descrip-
tion of the features is given in Supplementary
Material 1. There were 141 features in total, 63 stan-
dard features and 78 additional features.

Additionally, a set of expert features was deter-
mined in accordance with [33]. It comprised 47
features that are marked by asterisk in Supplementary
Material 1.

Standard protocol approvals, registrations,
and patient consents

The study was approved by the ethics commit-
tee of the state Berlin, Germany (13/0234-EK12). It
was registered in the German trials registry which
is an approved primary register in the WHO net-
work (DRKS00005041). Written informed consent
was obtained from all participants in the study.

Legal capacity to consent in participation in the
study was tested by an independent physician based
on the standardized criteria described in [34].

RESULTS

Demographic data of the 81 patients are given in
Table 1. The patients had been acutely hospitalized
because of bone fracture or other injury (37.0%), car-
diovascular disease (14.8%), reduced general health
(8.6%), stroke (4.9%), pulmonary disease (3.7%), or
another cause (30.9%, infection, recurrent diarrhea,
gait disturbance, kidney failure, etc.). All patients
were recruited in an acute care geriatrics unit. One
part of the patients had been directly hospitalized in
the geriatrics unit; the other had been first hospital-
ized in another unit (e.g., orthopedics) from which
they were later directly referred to the geriatrics
unit. Twenty-four patients (29.6%) had underwent
surgery during the current hospital stay prior to
enrollment. The number of comorbidities ranged
between 5 and 23 (13 on average). The most fre-
quent comorbidities were hypertension (in 84.0% of
the patients), lipometabolic disorder (61.7%), depres-
sion (53.1%), thyroid disease (38.3%), diabetes
mellitus (33.3%), chronic obstructive pulmonary dis-
ease/asthma (19.8%), stroke (18.5%), and myocardial
infarction (17.3%). One third of the patients had
manifested a delirium during their current hospital
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Table 1
Patient characteristics

Characteristic non-neurodegenerative AD (n = 17) CVD (n = 23) MD (n = 26)
(n = 15)

Age [years] 82.13 ± 5.48 79.18 ± 3.84 80.52 ± 6.20 83.88 ± 4.99
Gender [number of females] 11 (73.3%) 13 (76.5%) 13 (56.5%) 18 (69.2%)
Education [years] 10.97 ± 2.74 12.41 ± 3.54 12.61 ± 3.71 11.96 ± 3.57
MMSE [z-score] –2.73 ± 1.74 –3.99 ± 1.37 –3.18 ± 1.70 –4.01 ± 1.36

Numbers are given as mean ± standard deviation (AD, Alzheimer’s disease; CVD, cerebrovascular disease; MD, mixed etiology; MMSE,
Mini-Mental State Examination).

stay, which, however, at time of enrollment was
in remission so that delirium was not considered
a likely cause of the cognitive impairment. This
was confirmed, after enrollment, by the Nursing
Delirium Score [35] and the Delirium Rating Scale
[36]. Medication included on average 9 different
drugs (range: 1–16). Severity of cognitive impair-
ment according to the CDR score was mild cognitive
impairment (CDR = 0.5) in 65.4% of the patients and
mild-to-moderate dementia (CDR > 0.5) in 32.1%
(Supplementary Material 1). Two patients (2.5%) pre-
sented with CDR = 0.

Etiologic diagnosis by the team of experts was non-
neurodegenerative etiology in 15 patients (18.5%),
AD in 17 patients (21.0%), CVD in 23 patients
(28.4%), and MD in 26 patients (32.1%).

Full description of the patients, separated accord-
ing to etiologic diagnosis and including all considered
features, is given in Supplementary Material 1.

Single features

Automatic classification results based on single
features are shown in Fig. 2 and are listed in Sup-
plementary Material 1 for each single feature. Best
agreement of automatic single feature classification
with the expert etiologic diagnosis was obtained
with the scaled FDG uptake within a predefined
AD mask (45.4%, chance level: 25%). Among the
NP features (standard and additional), the BEHAVE
score (34.7%) and the CERAD subtests naming
animals (36.5%), wordlist recognition and recall
(34.4%, 33.7%), and figures recall (32.1%) were
most discriminative. Among the vascularMRI fea-
tures, highest accuracy was achieved by severity
of white matter hyperintensities (44.6%), existence
(yes/no) of periventricular white matter hyperinten-
sities (40.4%), total number of lacunes (40.7%), and
existence (yes/no) of chronic lacunes in bilateral tha-
lamus (39.4%). Among the volumetric MRI features,
grey matter volume in left and right lateral tempo-
ral lobe provided the highest discrimination power
(36.1%, 34.0%; Fig. 3). Prior surgery and delirium,

conditions that might have been expected to affect
the prediction performance, resulted in single fea-
ture classification accuracy that was not statistically
different from chance level.

Single modality versus all modalities

Classification results for single modalities and
all modalities together are shown in Fig. 4. Agree-
ment of the automatic 4-class classification (chance
level 25%) with the etiologic expert diagnosis ranged
between 25.5% (clinical, p = 0.42) and 45.1% (vas-
cularMRI, p ≤ 0.001). Next to best agreement was
obtained with PET (44.7%, p ≤ 0.001) and NP
(standardNP+additionalNP, 42.6%, p ≤ 0.001). Inte-
gration of all modalities provided a considerable
increase in the accuracy of automatic 4-class etiologic
diagnosis to 76.4% (p ≤ 0.001).

For detection of AD (among all subjects), NP,
volumetricMRI and PET features were particularly
important (accuracy for detection of AD: 45.1%,
30.8%, and 32.4%).

Standard modalities versus standard+additional
modalities

When automatic classification was allowed to use
only the standard features, accuracy of the 4-class eti-
ologic diagnosis declined to 31.4% (p = 0.100), from
76.4% with all features included, i.e., both standard
and additional features.

In the detection of a single etiology, restriction
to standard features resulted in a decrease of accu-
racy from 87.8 to 22.4%, from 80.0 to 38.8%, from
52.8 to 28.7%, and from 85.1 to 35.6% for non-
neurodegenerative etiology, AD, CVD, and MD,
respectively.

Expert features

When the classification analysis was limited to
the expert features (n = 47), an accuracy of 45.6 %
(p ≤ 0.001) was achieved.
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Fig. 2. Accuracy of automatic 4-class etiological diagnosis for each single feature (black line) and for all features of a given modality together
(grey batches). (demo, demographical features; clinical, clinical features; lab, standard blood and urine laboratory features; NP, standard
and additional neuropsychological test scores; ApoE, ApoE genotype; volMRI, grey matter volume in different predefined brain regions;
vascMRI, visual MRI-based scores for vascular pathology; PET, scaled FDG uptake in different predefined brain regions).

Detection of neurodegeneration
and cerebrovascular disease

Most successful in detecting neurodegenerative
disease (AD or MD versus all others) was PET
(85.8% accuracy, p ≤ 0.001). Significant classifica-
tion accuracy was also achieved by the modalities
NP, clinical data and genotype (65.4%, 62.2%, and
61.5%, p ≤ 0.05). Integrating all modalities did not
improve detection of neurodegeneration compared to
PET alone (85.1%, p ≤ 0.001).

Most successful in detecting cerebrovascular dis-
ease (CVD or MD versus all others) was vascularMRI
with an accuracy of 91.2% (p ≤ 0.001). Significant
classification accuracy was also achieved by PET,
NP, and volumetricMRI (66.5%, 64.5%, and 61.1%,
p ≤ 0.05). Integrating all modalities did not improve
detection of cerebrovascular disease compared to vas-
cularMRI alone (91.2 %, p ≤ 0.001).

Chance level in these two analyses was 50 % (not
25 % as in the 4-class case).

DISCUSSION

Primary goal of this study was to evaluate the utility
of biomarkers derived from structural and metabolic

brain imaging (MRI and FDG-PET) in addition to
detailed neuropsychological testing for the etiologic
diagnosis of clinically uncertain cognitive impair-
ment (CUCI) in elderly patients hospitalized in a
geriatrics unit for an acute or subacute cause without
history of cognitive impairment prior to hospitaliza-
tion. There is a considerable lack of studies on the
performance of biomarkers in this particular clinical
setting even though cognitive decline and dementia
are more common in elderly inpatients than in sub-
jects of the same age in the community [37, 38]. The
lack of data on the use of biomarkers in this setting is
also reflected in current diagnostic AD criteria. The
NIA-AA criteria require gradual onset of cognitive
decline over months to years for the diagnosis of prob-
able AD [7], cognitive decline occurring within days
to weeks during hospitalization excludes the diag-
nosis of probable AD even if there is established
biomarker-based evidence of the AD pathophysio-
logical process.

We hypothesize that the diagnostic benefit of using
biomarkers is even larger in this specific geriatric
inpatient setting than in the typical outpatient mem-
ory clinic setting. It is well known that patients
in acute hospitals may perform poorly in cognitive
testing for other reasons than neurodegenerative or
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Fig. 3. Quantitative characterization of temporal atrophy on MPRAGE MRI. Left: statistical parametric map from voxel-based morphometry
superimposed to coronal slices of the patient’s stereotactically normalized MPRAGE. Top right: Scheltens window [47] of the patient (framed
in red) and an age-matched healthy control subject (without frame). Bottom right: Bilateral hippocampus volume (adjusted for total intracranial
volume) estimated as described previously [31] of the patient (red dot) and healthy control subjects (green dots). Hippocampus volume is
plotted versus age. The images are from a 79 years old female categorized as mixed etiology (iDSS 0191).

cerebrovascular disease such as acute illness, pain,
lethargy, sleep deprivation, medication, depression,
anxiety, or simply not wishing to engage with testing
[39]. Therefore, standard diagnostic workup includ-
ing neuropsychological testing but no biomarkers
might not be reliable enough for etiologic diagnosis
of cognitive impairment in the acute geriatric hospital
setting [40].

This study included ‘unclear’ geriatric inpatients
with complex clinical presentations. The patients
were relatively old, 81.6 ± 5.5 years on average
(9 patients ≥90 years), had been hospitalized for
various acute or subacute severe syndromes, and pre-
sented with many comorbidities, considerable pain,
and extensive medication. Only a small fraction of the
participants would have fulfilled eligibility criteria of
typical studies on biomarkers for the diagnosis of cog-
nitive impairment. Prior surgery and delirium during
the current hospital stay had no significant impact on
the etiological diagnosis in this patient sample.

The complementary benefit from the additional
diagnostic procedures was tested by automatic eti-
ological single subject classification by a machine
learning method either using all available data,
i.e., from both standard and additional procedures
together, or using the data form standard clinical
workup only. The rationale was that the differ-
ence in the accuracy of automatic classification
between these two scenarios is a measure of the com-
plementary benefit from the additional diagnostic
procedures.

Single features and single modalities

Among the 141 single features, scaled FDG uptake
in a predefined AD mask [23] provided the highest
accuracy for the automatic 4-class etiological diag-
nosis (45.4%). Among the NP features, especially
naming, recognition and recall tests were relevant
for class discrimination, in agreement with previous
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Fig. 4. Accuracy of automatic 4-class etiological diagnosis for each single modality and combination of all modalities. The chance level is
at 25%. Modalities with a permutation p-value below 0.05 for being better than chance are marked by a *. (demo, demographical features;
clinical, clinical features; lab, standard blood and urine laboratory features; NP, standard and additional neuropsychological test scores;
ApoE, ApoE genotype; volMRI, grey matter volume in different predefined brain regions; vascMRI, visual MRI-based scores for vascular
pathology; PET, scaled FDG uptake in different predefined brain regions; all, all features together).

studies [33]. Among the 8 single modalities, the com-
bination of various vascular MRI scores provided the
best discrimination power (45.1%). However, accura-
cies below 50% achieved by single features or single
modalities are far too low to be clinically useful.
Thus, integration of features and / or modalities is
mandatory.

Standard versus additional modalities

The standard diagnostic modalities (demograph-
ical data, clinical data, standard blood and urine
laboratory tests, and standard neuropsychological
testing) are routinely used in the diagnostic workup
of elderly patients hospitalized in a geriatrics ward.
Their primary purpose is to detect and character-
ize the severity of cognitive impairment and to
detect or exclude treatable causes. Standard diagnos-
tic modalities may also allow an etiologic diagnosis,
particularly in patients with typical presentation.
However, the fraction of cognitive impairment that
is clinically uncertain (CUCI) is particularly large
in the geriatric inpatient setting. The present results
suggest that the standard diagnostic modalities alone
provide only little power for etiological diagnosis
in this setting (accuracy of automatic classification
based on standard modalities alone was 31.4%, not

significantly different from the chance level of 25%,
p = 0.100). In contrast, the present results suggest
a particularly large add-on value of the additional
diagnostic procedures in this setting, in line with the
primary hypothesis of the study.

Expert features

The acquisition of 141 features seems not feasible
in everyday clinical routine. We therefore restricted
the analysis to the 47 (apparently) most important fea-
tures based on expert opinion. Notably, this resulted
in a decrease of accuracy from 76.4% to 45.6% argu-
ing for the strength of boosting algorithms to extract
information from large sets of noisy features.

Detection of neurodegeneration
and cerebrovascular disease

Whereas FDG-PET features were most success-
ful in detecting neurodegeneration, vascular features
derived from MRI were best in identifying cere-
brovascular disease, as was to be expected. In both
cases, integration of other modalities did not improve
detection accuracy, suggesting that other modali-
ties did not provide complementary information.
For both pathologies, also NP resulted in above
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chance classification accuracy. Notably, volumet-
ricMRI reached the level of statistical significance
only for identification of cerebrovascular disease but
not neurodegeneration.

Structural MRI versus FDG-PET

Concerning the relative contribution of structural
MRI and brain FDG-PET, the present results suggest
that detailed MRI-based characterization of cere-
brovascular disease and FDG-PET assessment for
regional detection/exclusion of AD-typical synap-
tic dysfunction both contribute independently and
substantially to the etiological diagnosis (previous
paragraph). This finding is in agreement with pre-
vious studies on multimodal diagnoses of AD and
CVD in clinical settings [41]. It is also in line with
what is known to be the strengths and weaknesses of
both imaging modalities.

Limitations

The following limitations should be noted. First,
and most important, the sample size of this study
is relatively small. However, in order to minimize
small sample bias [42], the state-of-the-art machine
learning algorithm RUSBoost was used that has been
designed to deal with the challenges of small, incom-
plete and unbalanced data sets.

Second, the clinical usefulness of an etiologi-
cal diagnosis with 76% accuracy as achieved by
automatic classification integrating all features is
questionable, although it should be noted that this
accuracy level is for automatic classification accord-
ing to four etiologic diagnoses for which the chance
level is 25% (not 50% as in the case of two diagnos-
tic categories). Nevertheless, automatic classification
should aim at higher discriminatory power. Integrat-
ing information about amyloid pathology in the brain,
either from CSF or from amyloid-PET, is clearly a
promising approach, although the incremental benefit
from amyloid markers is still not very clear for “dif-
ficult” settings. In the present study, CSF analysis for
amyloid-� (and tau) proteins was performed. How-
ever, only 10 of the 81 patients consented in lumbar
puncture so that CSF was not included in the analyses.

Third, a general assumption of automatic single-
label classification is that all classes are mutually
exclusive. Therefore, mixed disease (MD) was
considered a separate etiologic disease class, inde-
pendent from AD and CVD, although MD might also
be considered a mix of AD and CVD. The rationale

for this was that the inclusion of mixed classes as extra
classes often provides better performance in auto-
matic classification than multi-label approaches [43].

Fourth, collinearity of features was not taken
into account. Although most classification algorithms
have problems with large and noisy data sets com-
prising also uninformative and redundant data, a
recent review concluded that most machine learning
methods (including decision trees and boosting algo-
rithms) outperform the general linear model in the
case of collinearity [44]. The same review also con-
cluded that in terms of accuracy it does not make a big
difference whether one ‘ignores’ collinearity in the
data or applies collinearity reduction methods such
as the variance inflation factor. Boosting algorithms
alleviate the problem of multicollinearity by shrink-
age of effect estimates similar to penalized regression
approaches [45]. The addition of an apparently redun-
dant variable can actually lead to better classification
performances [46].

Finally, acquisition and processing of data in this
study was rather extensive and complex. For multi-
modal diagnosis, including automatic classification,
to be feasible in clinical routine, the number of fea-
tures has to be strongly reduced. However, the limited
set of 47 expert features resulted in a much lower
accuracy than the whole set. To find the most powerful
diagnosis algorithm, future studies should evaluate
different combinations of features, automatic fea-
ture selection methods (such as principal component
analysis) and classification methods. In addition,
ways of automatizing the extraction of features
from the image data and fully automated classifica-
tion pipelines have to be developed for multimodal
classification.
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Appendix: Eligibility Criteria

Inclusion criteria

• the patient is hospitalized in a geriatrics ward
with expected remaining duration of the stay ≥
1 week

• clinically uncertain cognitive impairment
(CUCI) after standard diagnostic workup
including patient history, physical/neurological
examination, standard neuropsychological test-
ing (including mini-mental state examination,
MMSE, and optionally geriatric depression
scale, GDS, and clock drawing test), and stan-
dard blood/urine laboratory tests. No further
dementia-specific tests performed prior to
inclusion

• suspected etiology AD or CVD or MD
• ‘unclear case’, i.e., the cause of the CUCI is

sufficiently unclear so that additional diagnostic
evaluation including biomarkers appears useful
for each individual participant

• general health condition allows participation in
the trial (this excludes acute infections, instable
somatic conditions, instable trauma, nosocomial
resistant pathogens . . . )

• age ≥65 years
• a relative of the patient is available to support the

patient’s participation and for external assess-
ment

• MMSE ≥18 (rather low threshold to account for
sensoric deprivation)

• written informed consent given

Exclusion criteria

• history of dementia prior to hospitalization
• history of anti-dementia therapy

• expected survival <3 years
• suspicion of neurodegenerative disease other

than AD (frontotemporal lobar degeneration,
Morbus Parkinson (with dementia)/Lewy body
disease, atypical Parkinsonian syndromes)

• strong indication of secondary dementia (delir-
ium, hypothyreosis, vitamin B12 deficiency,
infection, normal pressure hydrocephalus, brain
tumor) which would violate the ‘unclear case’
inclusion criterion

• acute psychiatric disease which interferes with
the participation (e.g., schizophrenia, manic
depression)

• history of brain trauma, if the cognitive impair-
ment suddenly started at the time of the trauma

• large stroke, but only if it is the cause of the
cognitive impairment with high probability

• medication with strong effect on cognition
and/or cerebral glucose metabolism (e.g., anti-
convulsants)

• MRI-specific exclusion criteria
• low compliance expected
• lack of legal capacity to consent in the partici-

pation
• arrested by court order
• lack of consent in archiving and transfer of

pseudonymized data
• pregnancy and/or breast feeding
• participation in another medicinal product trial

during the last 3 months
• participation in another clinical study with radi-

ation exposure in the last 3 months


